Total Pages: 03

BT-3/D-23

43140

DIGITAL ELECTRONICS ES-207A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) Differentiate between the following:
 - (i) Positive and negative logic
 - (ii) Positive and negative logic.
 - (b) List various logic operations. Mention gates corresponding to them. Explain, how NAND gate can be used to perform OR operation.
 - (c) Convert decimal numbers into BCD (i) 46, (ii) 327.89, (iii) 20.30.
- 2. (a) State and prove (i) Duality Theorem (ii) De-Morgan's theorem. 5

P.T.O.

	Minimize the given expression using K-Iviap:
	$F(A, B, C, D) = \Sigma(1, 2, 4, 5, 7, 8, 9, 11, 13, 14).$
	Realise the obtained expression using logic gates.
	10
	Unit II
3. (a)	Draw logic diagram of full adder. Explain its
	working.
(b)	Design an octal to binary encoder.
4. (a)	What is a multiplexer? Explain working of an
	n: 1 multiplexer.
(b)	Design a 4 bit comparator.
	Unit III
5. (a)	Differentiate between the following: 5
	(i) Latch and flip-flop
	(ii) Level triggering and edge triggering.
(b)	Explain working of JK flip-flop. Discuss race around
	problem of JK flip-flop. Also describe how Master-
	Slave flip-flop overcomes this problem. 10
6. (a)	Explain application of shift register as ring counter.
	5
(b)	Design a synchronous mode 5 counter. Use JK flip-
3 g	flops for designing the counter.
L-43140	

(b) Write the rules of minimization using K-Map.

Unit IV

7.	Exp	lain working of the following:	
	(i)	R-2R ladder type DAC	
	(ii)	Successive Approximation type ADC.	
8.	(a)	Draw diagram of a memory cell. Explain eith	er
		read OR write operation with timing waveforms	in
		memory cell.	
	(b)	Write a note on ROM.	5